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1. Introduction

For many applications, especially those in which a computer is

controlling a real-time process (e.g. telephone switching, flight

control of an aircraft or spacecraft, control of traffic in a transpor-

tation system, etc.), it is desirable to continuously monitor the

performance of the system, as it is being used, to determine whether

its actual behavior is tolerably close to the intended behavior. It is

this sort of monitoring which we mean by the term "on-line diagnosis."

Implementation of on-line diagnosis may be external to the system,

both internal and external, or completely external. In the last

extreme, on-line diagnosis is sometimes referred to as "self-

diagnosis" or "self-checking" ([1], [2]).

On-line diagnosis plays a very important role in almost every

ultra-reliable computer system which has ever been proposed (see [2],

[3], or [4] for example), and a lesser but still important role in many

conventional systems. For example, the IBM System/360 utilizes

checking circuits to detect errors [5]. The signals generated by these

circuits are used in some models to freeze the computer so that the

instruction which was currently executing may be retried if possible,

and to assist in the checkout and repair of the computer if the auto-

matic retry attempt fails. Ultra-reliable computers typically use the

signals generated by the monitoring device to provide the computer

system with the information it needs to automatically reconfigure

itself so as to avoid using any faulty circuits. One other use for such

1
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signals is to simply inform the system user that the system is not

operating properly and that there may be errors in his data.

In general, on-line diagnosis is used to verify that the system

is operating properly; or conversely, to signal that it is in need of

repair. In most computer systems this task is also performed in some

part by off-line diagnosis. By off-line diagnosis we are referring to

the process of removing the system from its normal operation and

applying a series of prearranged tests to determine whether any

faults are present in the system. There are major differences between

on-line and off-line diagnosis and it is important to be aware of the

capabilities and the limitations of each.

One basic difference is that on-line diagnosis is a continuous

process whereas off-line diagnosis has a periodic nature. Due to this

only permanent faults can be diagnosed with off-line diagnosis be-

cause if a fault is transient in nature it may not be in the system

when it is tested. On the other hand, since on-line diagnosis is a

continuous monitoring process both permanent and transient faults

can be diagnosed. Also, with off-line diagnosis the system must be

removed from its normal operation to apply the tests and this may not

be acceptable in a real-time application.

The cost of either form of diagnosis depends on the nature of

the system to be diagnosed, the technology to be used in building the

system, and the degree of protection against faulty operation that is

required. With on-line diagnosis the cost is almost totally in the
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design and construction of extra hardware. With off-line diagnosis the

cost is in the initial generation of the tests and in the subsequent

storage and running of these tests.

In geheral, off-line diagnosis is useful for factory testing and

for applications where immediate knowledge of any faulty behavior

is not essential. Off-line diagnosis is also useful for locating the

source of trouble once such trouble is indicated by on-line diagnosis.

For example, Bell System's No. 1 ESS[4] uses duplicate processors

to continually check one another and once a discrepancy is detected

off-line diagnosis is used to determine which processer exhibited

the erroneous behavior and to locate the faulty module in that

processer.

In the MARCS study [2] a more integrated use of on-line diagnosis

is proposed whereby a number of checking circuits observe the per-

formance of various parts of the computer. With a scheme such as

this information about the location of a fault can be obtained from

knowledge of which checking circuit indicated the trouble.

Both forms of diagnosis have been used to check the operation
N

of computers from the very first machines until the present time.

In a short paper published in 1957 Eckert [6] informs us that off-line

diagnosis was relied upon for the ENIAC computer, that the BINAC

system had duplicate processors, and the the UNIVAC used a more

economical on-line diagnosis scheme involving 35 checking circuits.

During the past decade, however, the development of theory and
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techniques for fault diagnosis in digital systems and circuits have

focused mainly on problems of off-line diagnosis (see [ 1] and [7] for

example).

The work that has been done on on-line diagnosis is mainly in

the area of techniques. One early paper is Kantz's study [8] of fault

detection techniques for combinational circuits. In this paper he

investigated a number of techniques including the use of codes and

the possibility of greater economy if immediate detection of errors

was not necessary. Many of the more common on-line diagnosis

techniques have been gathered together and published in a book by

Sellers, Hsiao, and Beardson [9]. Much of what is in this book and a

large portion of the techniques that can be found elsewhere in the

literature are concerned with special circuits such as adders and

counters. For example, see the papers by Avizienis [10], Rao [11],

and Dorr [12].

Relative little work can be found on the theory of on-line

diagnosis. In one of the earliest works of a theoretical nature

Peterson [13] showed that on adder can be checked using a com-

pletely independent circuit which adds the residue, module some base,

of the operands. He went on to show that any independent check of this

type was a residue class check. Another interesting theoretical

result was published by Peterson and Rabin [ 14]. They showed that

combinational circuits can differ greatly in their inherent diagnosability

and that in some cases virtual duplication is necessary. A later and
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more general paper is that of Carter and Schneider [15]. They propose

a model for on-line diagnosis which involves a system and an external

checker. To be on-line diagnosable the system must produce non-

code outputs when it fails and the external checker must signal the

occurrence of such an output. The checking circuits that they

consider indicate the presence of faults in the checkers themselves in

addition to faults in the systems they are monitoring.

With decreasing cost of logic and the increasing use of com-

puters in real-time applications where erroneous operation can

result in the loss of human life and/or large sums of money the use

of on-line diagnosis can be expected to increase greatly in the

near future. The importance of this area along with the relative

lack of theoretical research is our motivation for initiating this study

of on-line diagnosis.
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2. Discrete-Time Systems

On-line diagnosis is inherently a more complex process

than off-line diagnosis because of two complicating factors: i) it has

to deal with input over which it has no control and ii) faults can occur

as the system is being diagnosed. We would like to build a theory of

on-line diagnosis using conventional models of time-invariant (stationary,

fixed) systems (e. g. sequential machines, sequential networks etc.).

However, due to the second factor mentioned above these conventional

models can no longer be used to represent the dynamics of the system

as it is being diagnosed. A system which is designed and built to behave

in a time-invariant manner becomes a time-varying system as faults

occur while it is in use. Therefore, a more general representation

ased on time-varying systems is required. Based on this fundamental

\servation we have developed what we believe to be an appropriate

m del for the study of on-line diagnosis.

Definition 1

Relative to the time-base T = {.. ., -1, 0, 1,... }, a discrete-

time system (with finite input and output alphabets) is a system

S = (I, Q, Z, 6, A)

where I is a finite set, the input alphabet

Q is a set, the state set

Z is a finite set, the output alphabet
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6: Q x I x T- Q, the transition function

X: Q x I X T-> Z, the output function.

The interpretation of a discrete-time system is a system which,

if at time t is in state q and receives input a, will at time t emit output

symbol X(q, a, t) and at time t + 1 be in state 6(q, a, t). In the special

case where the functions 6 and A are independent of time (i.e., are time-

invariant), the definition reduces to that of a (Mealy) sequential machine.

In the discussion that follows we will assume, unless otherwise quali-

fied, that S isfinite-state (i.e., jQ < co).

To describe the behavior of a system, we first extend the transi-

tion and output functions to input sequences in the following natural way.

If I* is the set of all finite length sequences over I (including the null

sequence A) then:

: Q xI* x T Q

where, for all q E Q, a e I, t e T:

6(q, A, t) = q

6(q, a, t) = 6(q, a, t)

6(q, ala 2 . .. a n, t ) = 6(6(q, ala 2 . .. an-1, t), an, t + n-1).

Similarly, if I+ = I* - { A}:

X: Q xI + x T  Z

where, for all q e Q, a E I, te T:

(q, a, t) = A(q, a, t)

A(q, ala2 ... an, t) = t((q, aa 2 ... a n, t), an, t + n-1).
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Relative to these extended functions, the behavior of S in state

q is the function

q : I' x T--> Z

where Pq (x, t) = X(q, x, t).

Thus, if the state of the system is q and it receives input sequence x

starting at time t, then Pq (x, t) is the output emitted when the last

symbol in x is received (i. e. the output at time t + Ix - 1 (Ix =

length (x))).

Many investigations of on-line diagnosis and fault tolerance have

studied redundancy schemes such as duplication and triplication.

Typically they have not dealt with the problem of starting each copy

of a machine in the same state. In this study we will be examining

these schemes and others for which the same problem arises. Since

many existing systems have reset capabilities, and since this feature

solves the above synchronizing problem we will use a special type of

system for which the reset capabilities are explicitly specified. This

explicit specification of the reset capability is essential since it is an

important part of the total system and is just as subject to faults as

any other portion of the system.

Definition 2

A resettable discrete-time system (resettable system) is a

system
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S = (I,Q, Z, 6, X, R,p)

where (I,Q, Z, 6, X) is a discrete-time system

R is a finite nonempty set, the reset alphabet

p: R x T ->Q, the reset function.

A resettable system is resettable in the sense that if reset r is

applied at time t - 1 then p(r, t) is the state at time t. This method of

specifying reset capability is a matter of convenience. This feature

could just as well have been incorporated as a restriction on the transi-

tion function relative to a distinguished subset of input symbols called

the reset alphabet. Thus a resettable discrete-time system can indeed

be regarded as a special type of discrete-time system. If 6, A, and p

are all independent of time the definition reduces to that of a resettable

sequential machine. Thus a resettable machine can be viewed as a

resettable system which is invariant under time-translations.

Given a resettable system we can view it as a system organized

as in Figure 1.

a E I

l Bi- ZzE Z

I _ _ _ _ _ _

Figure 1 Schematic Diagram for S = (I, Q, Z, 6, A, R, p)
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We will represent sequential machines in the usual manner, i. e.

via transition tables or state graphs. Resettable machines are repre-

sented by minor extensions of these two methods. The transition table

of a resettable machine. is identical to that of a machine with the addi-

tion of one column on the right to accommodate the reset function. If

p(r) = q then r will appear in the last column of the q row. Similarly,

the state graph of a resettable machine is identical to that of a machine

with the addition of one short arrow for each r E R. This arrow will

be labeled r and will point to state p(r).

Example 1

Let M1 be the sequence generator with reset alphabet f01 and

input alphabet {1} which has been implemented by the circuit in Figure

2.

2d

3 d 
4

Figure 2 Circuit for M

Then the transition table and the state graph for M1 are as shown in

Figures 3 and 4.



1 R
00 01/0 0
01 11/1
10 00/1
11 10/1

Figure 3 Transition Table for M

0

00 1/0

1/1 1/10 01

10 -1/

Figure 4 State Graph for M

The circuit in Figure 2 is also an implementation of a similar machine

M 2 with input alphabet { 0, 1}. The state graph for M 2 is shown in

Figure 5. 0

0/0
00 10 0

0 1;
0/1

1/1 0/ 1  1/1

Figure 5 State Graph for M 2
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Thus, in M2 the input symbol "0" can be intrepreted as a regular

input or as a reset input. In M2 the outputs for input 0 are explicitely

specified whereas in M1 they may be regarded as classical "don't

cares. "

In general, we have no convenient representations for discrete-

time systems and resettable systems. About all we can do is specify

each of the functions 6, X, and p explicitly. However, most of the

systems that we will deal with will be truly time-varying at only a few

points in time and thus can be described by the machines they

resemble in the intervals between these points.

Example 2

Suppose that M1 was implemented as in Figure 2 and that this

circuit operated perfectly up to time 100 when gate 2 became stuck-

at-0. What actually existed was not a resettable machine but a (time-

varying) resettable system S which looks like M1 up to time 100 and like

a different machine, say M, thereafter. The graph for M' is shown in

Figure 6. 0

00 1/0

1/1
1//1

1/11

Figure 6 Resettable Machine M'1
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We can represent S as follows:

S =M 1 for t < 100

for t > 100.

By this we mean that I = 1  I1 and likewise for Q, Z, and R, and

that

6 (q t)= 1(q, a ) fort <1005(q,a,t)=

(,5(q,a) for t > 100

and similarly for X and p.

For resettable systems we take the definitians of 6, A, and q
q

to be the same as those for systems. It is also convenient in the case

of resettable systems to specify behavior relative to a reset input r

that is released at time t, that is, the behavior of S for condition (r, t)

(rE R, t E T) is the function

3 +
r, t

where

Or, t(x) = fp(r, t)(x ' t).

If t = 0, r, 0 is referred to as the behavior of S for initial reset r and

is denoted simply as r"
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3. Realizations

Discrete-time systems are a straightforward generalization of

sequential machines and many notions that we are familiar with in the

context of sequential machines can be generalized in a similar manner

to apply to discrete-time systems. In this section we will look in some

detail at the generalized notion of a realization. As in other sections,

our emphasis here will be toward those aspects of the theory that will be

useful to us in our study of on-line diagnosis. We begin by stating Meyer

and Zeigler's definition of realization for sequential machines [le I.

Definition 3

If M and M are sequential machines then M realizes Mi (written

M pM) if there is a triple of functions (u1 , a2' a 3 ) where ol:(I) +

is a semigroup homomorphism such that a 1 (I) c I, a 2 : Q -> Q,

ao: Z'->Z where Z' C Z, suchthatfor allqE Qandallx E (I)
3.q (x) = or 3(gor2(4 ) (Orl(X))).

It has been shown by Leake [ 17 ] that this strictly behavioral

definition of realization is equivalent to the structurally oriented defini-

tion of Hartmanis and Stearns [ 18].

The following definition extends the above notion in a natural

manner to include discrete-time systems.

Definition 4

If S and S are two discrete-time systems then S realizes S (SpS)

if there is a triple of functions (al, 12, '3) where a: () + --> I is a
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semigroup homomorphism such that arl(I) C I, U2: Q -- Q, U3: Z'

where Z' C Z, such that for allq c Q, for all t E T, and for all x e (I)

(xt) = a3( r 2(4) (ai(x), t) ).

If S and S are resettable systems our definition of realization is

somewhat different. Inherent in this definition is our presupposition

that a resettable system will be reset before every use.

Definition 5

If S and S are two resettable systems thenS realizes S (SpS) if

there is a triple of functions (al, a2 ' 03) where al () -> is a

semigroup homomorphism such that al(I) C I, a2: R --> R, 3: Z' -> Z

where Z' C Z, such that for allre R, for allt E T, and for all x e (I) +

013 , t(x) = a3(P1 2(?) t(Ul(X))).

In the case where S and S are time-invariant resettable systems

(i. e., resettable machines) all mention of time can be deleted from the

above definition.

Thus for each r E R and t E T the behavior of S for condition

(a2 (), t) is the same (modulo input encoding and output decoding) as

the behavior of S for condition (i, t).

Example 3

Let M 3 and M 3 be the resettable machines shown in Figures

7 and 8.
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0/1 r 0/0

q 0 1/0 q,

1/1 1/0

q2 0/0

Figure 7 Resettable Machine M3

0/1 r 1  0/0

s 1

1 1

1/1 1/0 1/0
f.. . r 2

6s3 1/0 s2

0/0 0/0

Figure 8 Resettable Machine M3
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Then M3 pM 3 under the triple (al, a 2 , a 3 ) where l:( I 3 )+  > I +

is the identity, a2 : R 3 -> R3 is defined by u2 (r) = r l, and

a 3 :Z 3 -> Z3 is the identity. To verify this claim we

need only observe that Or (x) = O3 (x) for all x e (I3).

Notice that the definition of realizes for resettable

systems is less restrictive than that for discrete-time systems

in the sense that where they are both resettable we only

require the realizing system to mimic the behavior of the

reset states of the realized system; while in the case where

they are not resettable the realizing system must mimic

the behavior of every state of the realized system. On

the other hand, the definition in the resettable case is more

restrictive in the sense that for each reset state in the

realized system not only does there exist a state in the

realizing system which mimics its behavior, but we also

know how to get to that state.

For the special case of time-invariant resettable systems (i. e.,

resettable machines) the above remarks will be made more precise

in the following result which is analogous to the result due to Leake

that we have cited earlier. Let M be a resettable machine. The

reachable part of M is the set

{pe Q jp = 6(p(r),x) for some r e R, x E I*}.
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A machine M is 2-reachable if any state in the reachable part of M

can be entered into by a reset alone or by a reset followed by an input

sequence x with Ix I < . Clearly, any resettable machine M is

(IQ I -1) -reachable.

Example 4

The reachable part of M 3 (see Example 3) is {so, s 2, s3}. M 3

is 2-reachable since p 3(rl) = so, 63(p3(rl) , 1) = s2, and 3( 3 (rl), 11) = s 3 .

Theorem 1

Let M and M1 be two resettable machines. Let P and P be the

reachable parts of M and M. Then M realizes Mi if and only if there

exists a 4-tuple of functions (71, 72' 73, 74) where

7:I-> I

72: P-> )(P) -¢

73: Z ->Z

74: RI-> R

such that

i) 6 (72 (P), 71(a)) c 72(6(p , a)) for all pE P and aE I

ii) 7 3 (X(p, 7 1 (a))) = (p,a) for all pE P, aE I, and pE 72(p )

iii) p( 4 (r)) E 72 (p(r)) for all r E R.

Proof: (Necessity) Assume MpM. Then there exists an appropriate

triple of functions (al, a2 , a 3 ) such that 13(x) = V3 ( i2~) (al(x) )

Therefore

f(.) (uv) = 3(a2( (jZ)) (ai(uv)))
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for eachr R, u c I*, and vE I+.

Hence,

) (v) = ((
3

or(p(2(r)) ,(U)) (alv))) "

Thus for each p E P there is a p E P such that

I(v) = 3p(1V )

Consider 772: P -> &(P) - ¢ defined by

2 p E P I c3(p (aI(v))) = i(v), for all v E I+ }

and consider 71: I -> I defined by

71(a) = al(a).

Claim: The 4-tuple (1, 7 2 , 3, 2) satisfy i), ii), and iii).

i) Letp E 72( ) . We must show 6(p, 71 (a)) E 72 (6 (p, a)).

(, a) (x) = p3(xa)

= 3(13p(arl(xa)))

= o3(3 6 (p, crl(a)) (ol(x)))

= cr3(36(p, q71(a)) (arl(x))) .

Hence, 6(p, 7 1 (a)) E 72(6(p, a)).

ii) Let p E 7 2 (p). We must show u3 (X(p, 1 (a))) = (p, a).

(p, a) = -(a)

= a3 ( p (71(a) ) )

or 3(;k(p, 71(a) )).
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iii) Let r E R. We must show p(u2 (r)) E 772 ((r))

P(x) = (i3 2() (al(X) ) ) implies that
p2
P(r2 (r) ) E ?72 ((r))

(Sufficiency) Suppose there exists functions (71' 2' 73' 74) as in the

statement of the theorem. Let al: (I) + > I be the natural extension

of 771 to sequences. I.e., cl(al. .. an) = 71 (al) .. .}1(an).

Claim: MplVI under (al' 774' 73)

Consider : P-- P where

(p) = some p E 772 (p) such that

P(774 (r)) = C(p(r)).

Let x = yawhereaE I. Then

773(9 4() (al(x))) = 73(9( 714 (r ) ) (x ) ) )

= 773((p(r) ) (l(x)) )

= 73(A(6((p(r)), al(y)), al(a)) )

= 773 ('X(p, al(a))) where p E ? 2 (6 (p(r), y)

= X(6(p(r),y),a)

= ft (ya)

This completes the proof of Theorem 1.

In this study we will not be concerned with the more general

theoretical aspects of realizations. What we desire from realizations
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is the following. Given a resettable system S we will want to find a

resettable system S such that S can do every thing that S can and R

has the on-line diagnosis properties that are needed. Generally

we will think of S as having two sets of output terminals; one which

is used in place of the output terminals of S and the other which is

used solely for diagnosis.

To formalize this notion of a system having more than one set

of output terminals we introduce the notion of a structured set. As

defined by Zeigler [ 19], a set k is structured by injecting it into

a cross product of an indexed family {Ki E N}. In what follows we

will take N to be a finite ordered set such as the first n integers.

Thus a structure assignment is a one-one map from K into x iEN K ..

Normally we do not mention this map explicitly but will consider K

(once structured) as a subset of xiN K . Given a structured set K a
icN 1,

family of coordinate projections {Pi i E N} where P i: K .-> i is

3 3
defined by

Pi (k ,.. k ,i...,ki ) =ki..
31 n ]

With these notions in mind the special type of realization which will

be used in our theory of on-line diagnosis can be presented.
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Definition 6

Let S and S be two resettable systems with Z structured so

that Z c Z 1 x Z 2 . Then S d-realizes S (Sd S) if SS under the

triple of functions (al, O2 a3) where a3 = or t p 1 for some

a 3  Z 1--- > Z

I. e., S S if S S and the output decoding is independent of thepd P

second coordinate of Z. In this case Z 1 is called the principle

output and is given the more mnemonic name Zp and Z 2 is called

the augmented output and is given the name ZA. Thus, Z c ZPx Z A

Given that S S we can define two new functions associated with
Pd

Or, t, the behavior of S for condition (r, t). The first one will be the

behavior function of S with respect to the output terminals which are

used to mimic S and the second will be the behavior function of S with

respect to the output terminals which are used solely for diagnosis.

More precisely, the principle behavior of S for condition (r, t) is the

function

+
Yr, t p

where

'r, t (X )  1 (r, t(x)) for each x e I+

or more compactly,

r, t = 1 °0ir, t'
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The augmented behavior of S for condition (r, t) is the function

a z+
r, t: A

where a =r, P2 o r, t'

Thus r, t(x) = (yr, t(x) , a t(x)) for all x E I+ . We now extend these

functions in a natural way. For r E R and t E T let

AA + +
r, t

where for all al.. a E I

A

Or, t(al. . an) = r, t(a) " r, t(ala2 .' an).

A A
Likewise let yr, t and art denote the natural extensions of r, t andS r,t ir,lt
a toZ nZ
r,t Z+ and Z+ respectively.
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4. Resettable Systems with Faults

Our model of a "resettable system with faults" is a speciali-

zation of Meyer's general model of a "system with faults" [20].

Informally, a "system with faults" is a system,
along with a set of potential faults of the system and
description of what happens to the original system as
the result of each fault. The original system and the
systems resulting from faults are members of one of
two prescribed classes of (formal) systems, a "specifi-
cation" class for the original system and a "realization"
class for the resulting systems. More precisely, we
say that a triple (6, 61,p) is a (system) representation
scheme if

i) c is a class of systems, the specification
class,

ii) is a class of systems, the realization
class,

iii) p: R -> S where, if R E (, R realizes
p(R).

By a class of systems, in this context, we mean a class
of formal systems, i.e. a set of formally specified struc-
tures of the same type, each having an associated behavior
that is determined by the structure [20].

In this study we are concerned with the reliable use of a

system. I.e., we are concerned with degradations in structure

which Meyer calls "life defects". This is contrasted with reliable

design in which case we would be concerned with "birth defects".

Thus, in our case, a specification is a realization and we choose

a representation scheme A = (6t, (R ,p) where p is the identity

function on A.
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Assuming that a faulty resettable system has the same

input, output, and reset alphabets as the fault-free system S,

the following class of resettable systems will suffice as a reali-

zation class;

t(I,Z,R) = {S'jS' = (I,Q',Z, 6', A', R,p')}.

In summary, the representation scheme that we are choosing for

our study of on-line diagnosis is the scheme ((1,6,p) where

S= S(I, Z, R) and p is the identity function on R.

In such a scheme the seemingly difficult problem of describing

faults and their results becomes relatively straightforward. Before

we state our particular notion of a fault and its results we will

repeat here Meyer's general notion of a "system with faults"

[20 ].

A system with faults in a representation scheme
(6,(61,p) is a structure (S, F,4) where

i) SE6
ii) F is a set, the faults of S

iii) ¢: F ->(R such that, for some f E F,
p(¢(f)) = S.

If f E F, the system Sf = 0(f) is the result of f. If
p(S f ) = S then f is improper (by iii), F contains at
least one improper fault); otherwise it is proper. A
r alization S is fault-free if f is improper; otherwise
S is faulty [20].
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In applying this notion to our study we must first define what

we mean by a fault of a resettable system. Given a resettable system

S E S(I, Z, R), a fault f of S can be regarded as a transformation of

S into another system S' E e(I, Z, R) at some time T. Accordingly,

the resulting faulty system looks like S up to time - and like S'

thereafter. Since S may be in operation at time T we must also be

concerned with the question of what happens to the state of S as

this transformation takes place. We handle this with a function

0 from the state set of S to that of S'. The interpretation of 0 is that

if S is in state q immediately before time T then S' is in state 6(q) at

time 7. More precisely,

Definition 7

If S E S(I, Z, R), a fault of S is a triple

f = (S',T, 0)

where S' e (I, Z, R), Te T, and 0: Q ->Q'.

Given this formal representation of a fault of S, the resulting

faulty system is defined as follows.

Definition 8

The result of f = (S',T, 0) is the system

sf= (I,Qf, Zf, ,R, pf )

fwhere Q = Q Qwhere Q = Q uQ
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6(q,a,t) ifqc Qandt < r- 1

6f(q, a,t) = 0(6(q, a,t) ) if q eQ andt = - 1

6'(q, a,t) if q E Q' and t > -

(f atX(q,a,t) if q Q andt < -
Xqa,t)

X'(q, a, t) if q e Q' and t > -

p(r, t) if t < 7

fp (r, t) = 0(p(r, t) ) if t = 7-

p'(r, t) if t > r.

(Arguments not specified in the above definitions'may be assigned

arbitrary values.)

In justifying this representation of the resulting faulty system

one should regard a fault f = (S', 7r, 0) as actually occurring between

time 7- - 1 and 7. Note that, for any fault f of S, S f  (I, Z, R).

Example 5

Recall that in Example 2 M 1 was transformed into M' at time

100. We would say now that f = (MI, 100, e), where e is the

identity function, is a fault of M 1 and that S is the result of

f (i. e., S= ) .

Example 6

Again consider M1 as implemented by the circuit in Figure 2

and let g be the fault which is caused by d1 becoming stuck-at-1 at
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time 50. Then g = (M', 50,0) where M' is an indicated in Figure 9 and

0 : Q1-> is defined as follows:

q 0(q)

00 10
01 11
10 10
11 11

0

Figure 9 Resettable Machine M"
1

M g will behave as M 1 up to time 50 and thereafter it will produce

a constant sequence of l's.

To complete the model, a resettable system with faults, in this

representation scheme, is a structure

(S, F,)

where S E cY(I, Z, R), F is a set of faults of S including at least one

improper fault (e. g., f = (S, 0, e) where e is the identity function),

and 4: F -> cY(I, Z, R) where p(f) = S , for all f E F. Given this

definition, we can drop the explicit reference to p in denoting a

resettable system with faults, i.e., (S, F) will mean (S, F, 0) where

Sis as defined above.
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In the remainder of this study we will be dealing almost exclusively

with resettable systems. Thus we will refer to resettable systems

simply as systems and to resettable machines as machines.

A word is in order about our definition of faults. The

interpretation here is one of effect, not cause, e. g. we don't

talk of stuck-at-1 OR gates but rather of the system which is created

due to some presumed physical cause. We will refer to these physical

causes as component failures or simply as failures. A fault, by our

definition, consists of precisely that information which is needed to

define the system which results from the fault. This allows us to treat

faults in the abstract; independent of specific network realizations of

the system and without reference to the technology employed in this

realization and the types of failures which are possible with this tech-

nology. We are insured, however, that for each fault we have enough

information to access the structural and behavioral effects of the fault;

in particular as these effects relate to fault diagnosis and tolerance.

There are limits, however, to how much can be done with a

purely effect oriented concept of faults. When a system is sufficiently

structured to allow a reasonable notion of what may cause a fault we

certainly will want to make use of this notion. When this is the case

we may, through an abuse in language, refer to a specific failure at

time 7 as a fault. What we will mean is that we have stated a cause
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of fault and that there is a unique fault which is the result of this

failure at time 7.

It is interesting to see what the scope of our definition of fault

is in terms of the types of failures which will result in faults. Recall

that a fault f of a system S is a triple, f = (S', 7, 0), where S' E 6(I, Z, R).

Thus S' is a (resettable) system with the same input, output, and reset

alphabets as S. The previous sentence contains, implicitly, almost

every restriction that we have put on faults. First of all, S' is a

(resettable) system. Thus it remains within our universe of discourse.

In particular, its reset inputs still act like reset inputs. I. e., they

cause S' to go into a particular state regardless of the state it was in

when the reset input was applied. The restrictions on the input, output,

and reset alphabets are reasonable since after a fault occurs the system

presumably will have the same input and output terminals as it had

before the fault occurred.

We see that since a fault f is a triple (S', 7, 0) with S' a (time-

varying) system that we will have considerable latitude in the types

of causes of faults which we may consider. In particular, we may

Sconsider simulta ou Jpermanent failures in one or more components,

simultaneous intermittent failures in one or more components, or any

combination of the above occurring at the same or varying times. For

example, a fault f may be caused by an AND gate becoming stuck-at-1
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at time zl, followed by an OR gate becoming stuck-at-0 at time 2 .

Our main interest will be the case where the fault is caused by the

failure of only one component, since usually such a failure will be

diagnosed before a second failure occurs. In the case where a fault

of a machine M is caused by a permanent failure of one or more

components at only one time f will be of the form (M', T, 0).

Let us now compute the behavior of S in state q. Let x = a . .. a n EI
ln

Then

f _
Sq(Xt) = X (q, x, t)

= X (6 (q, al... an- 1 , t), an, t + n- 1).

There are three cases which must be considered.

Case i) qEQandt +n-1 < T. Then

f
P3 (x, t) = (6(q, al .. an-1' t), an, t + n-1)

= q (x, t).

Case ii) qEQ, t + n-1 >T, andt <T. Sayt+n-m=T . Then

ff(x, t) = X'(_1'(0(6(q, al, , t)), an. an 1'q "an- m' n-m+l'" n-1

t + n-m), a , t + n-1)

0(6(q, al... an-mt) (an-m+l.. an, t + n-m)

= '0(-(q y t)) (z, t) where y = a... anm
0( (q, y, t))1 n-m

and z = a .a.
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Case iii) q E Q' and t > 7. Then

fq(x, t) = A'('(q, al. .. an-i, t), an, t + n-1)q 1
= 3q(x, t).

Thus we have proved:

Theorem 2

Let S be a system and f = (S', T, 0) a fault of S. Then for each

t E T and x E I+

13 (xt) if q EQ andt + jxI <T

0 3(x, t) = 0(6(q, y, t)) (z, ) if q E Q, t + Ixf > T, and t < T
q where x = yz and lyJ = - t

0' (X, t) if q E Q, and t > T.q

(As in the definitions of 6 and f arguments not specified may be assigned

arbitrary values.)

Corollary 2. 1

Let S be a system and f = (S', T, 0) a fault of S. Then for each

r E R, t E T, and x E I+

rrt(x) if t+ IxI <7

S( (p(r, t), y, t)) (z, t) if t + xI > T and
f
f t (x)= t <r wherer,t

x = yz and y[ = T- t

13' (x) if t > 7.
rt
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Proof: By its definition

f t(x) = f (x,t).
r. p (r, t)

Again we have three cases to consider.

Case i) t+ JxJ 7. Thent <Tandp (r,t) =p(r,t) EQ.

Therefore by Theorem 2

ff f (xt) = Ap(r,t) (x, t)pf(r, t) = ~,t

= Or, t(x)

Caseii) t+ IxI >andt T. Ift <Tthenpf(r,t)=

p(r, t) E Q and case ii) of Theorem 2 applies with p(r, t) in

place ofq. If t = T then p (r,t) = 0(p(r,t)) EQ'andcase

iii) of the theorem applies giving us

f
f f (x) t) ' ) (x, t)

p (r, t) = (p(r, t) )

0 (5(p(r, t) , A, t) ) (x, t).

Case iii) t >T. In this case p (r,t) = p'(r,t) E Q'. Therefore

ff(r, t) (x, t) = p'(r t) (x, t)
p (r, t) p Ir,

= j3' (x).
r,t

We have noted that we will often be interested in the physical

cause of a fault. For example, in a network realization of a machine

we may be interested in faults which are caused by a specific NAND

gate becoming stuck-at-1. Since this gate failure results in different
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faults as we consider it occurring at different times it seems natural

to give a name to this family of faults. More generally, we will define

an equivalence relation on a set of faults such that a family of faults

such as we have just mentioned will be an equivalence class.

Definition 9

Let F be a set of faults of a system S and let fl = (S 1 ,T 1 , 1' )

and f2 = (S2' 2' 02) be in F. Then f1 is equivalent to f 2 (f1  f 2) if

S and S2 are such that

i) Q1 = Q2

ii) 61 (q,a,t +r 1 ) = 62(q,a,t + T2 ) for allq EQ, aE I, andt ET

iii) xl(q,a,t+ 1 ) A2 (q,a,t+ T2 ) for allq EQ, a E I, andt ET

iv) pl(r,t + 1 ) = P2 (r,t +T 2 ) for all r R, and tET

and if 01 = 02'

We can think of equivalent faults as being time-translations of

one another.

Theorem 3

The above relation is an equivalence relation.

P ro. I clearly reflexive, symmetric, and transitive because "=

has these properties and because the quantifiers, for all q E Q etc.,

are independent of the particular fault.

Notation: We denote then equivalence class of F which contains the

fault f by If] F" When the class of faults is clear we will drop the F.
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Generally if F is not mentioned we take it to be the set of all possible

faults of a system S. We let f = (Si, i, 0) denote the fault in [f] which
1 f.

occurs at time i. When dealing with behaviors 3 will denote the
f.

behavior of S , and (3 will denote the behavior of S..
1

From the definition we can see that if f = (M', , 0) where M' is

a machine then [f] = {(M',t, 0) t E T}.

Let f be a fault of a machine M. It is clear from Definition 9

that fi. fj implies that ,iq(x, t + i) = 1q(x, t + j) for all t E T. Likewise,j Oq q'

t (x) = (x) for all tET.r, t+i r,t+j

Since M is time-invariant it is a direct consequence of Theorem 2 and

the above observation that there is a similar relation between the be-
f. f.

haviors of M 1 and M . More precisely,

Theorem 4

Let f be a fault of M and let fi [f If]. Then for all q e Q, x E I ,

r E R, and t e T

f. f.
S(x,t + i) = 1 (xt + j)

q q'

f. f.
and ( 1 (x) = ( ] (x)r, tir .t+j (x "
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5. Fault Tolerance and Errors

Given a system with faults (S, F) and a proper fault f E F, an

immediate question is whether the faulty system Sf is usable in the

sense that its behavior resembles, within acceptable limits, that of

the fault-free system S. We will use the general notion of a "toler-

ance relation" [20] to make more precise what is meant by "accept-

able limits. " A tolerance relation for a representation scheme

(-S,6,p) is a relation T between A and S-(T C Rx IS) such that, for

all R e 61, (R,p(R)) E T(i.e. p CT). In this section we will

develop the particular notions of "acceptable limits" that we will be

using in this study of on-line diagnosis.

At this point in our development we will assume that we are

given two systems S and S where SpdS. Thus the principle and aug-

mented behaviors of S will be defined. More generally, assume that

we are given any system S with structured output Z c ZP x ZA Such

a system will be called an output-augmented system. Clearly the

definitions of principle and augmented behaviors apply to output-

augmented systems.

f = (,So-, 0) is a fault of S then since the output alphabet of S

is the same as that of S it can be given the same structure, and hence-

forth we will always assume that this has been done. Accordingly, we

can compare the principle and augmented behaviors of Sf with those

of S.
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Note that any system S can be considered as an output-augmented

system by considering Z to be Z x {0}. Given a system S with un-

structured output alphabet Z we will assume this trivial augmentation

structure. In this case the principle behavior of S will be identical

to the behavior of S.

Definition 10

Let f be a fault of a system S. Then f is tolerated by S for resets

at time t if

r, t(x) = (x) for eachr ER andx E .

In the special case where f is tolerated by S for resets at time 0 we

will simply say f is tolerated by S.

Note that this is a very refined notion of fault tolerance. A

coarser notion, and one more in keeping with the literature, would be

behavioral equivalence for resets at any time. We prefer our finer

definition for with it the effects of time can be more naturally analyzed.

One question which we will study later is: For resets at how many

(and which) times must a fault be tolerated for it to be tolerated for

resets at any time?

Theorem 5

Let f = (S',r,) be a fault of machine M. Then f is tolerated by

M for resets at time t if and only if f is tolerated by M.
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f T
Proof: fT-t is tolerated by M <=> O (x) = - (x)

<=> Wr, t(x) = r (x)

<==> f is tolerated by M for
resets at time t.

The second implication follows from Theorem 4 and the hypothesis

that M is a machine (i. e., a time-invariant system).

Thus, fi f fk' . . . is tolerated by M for resets at time tl, t 2 , t 3 ,

respectively if and only if {fi-t1 ft fkt3, . . . } is tolerated by M

where by F is tolerated by M we mean that each f E F is tolerated by

M. Due to this we will always consider resets to be released at time

0 when dealing with fault tolerance of machines and no generality will

be lost. Clearly, due to Theorem 4 we can do this same sort of thing

for any other behavioral attribute.

Example 7

Let M4 be the sequence generator shown in Figure 10. This

machine could be implemented by the circuit shown in Figure 11.
0

00 1/0 01

1/0

11 10
1/0

Figure 10 Machine M4



39

d 1
I Z

Figure 11 Circuit for M

Let f be a fault of M4 which is caused by d 1 becoming stuck-at-1 at

time 7-. Then f = (M4, 0 ) where M4 is the machine represented by

the graph in Figure 12 and 0 is as indicated below.

q 0(q)

00 10
01 11
10 10
11 11

0

Figure 12 Machine M'
4

-1

whereas I30(11) = 0. Thus f 1 is not tolerated by M4 . On the other

hand both M4 and M4  will produce the sequence 00010101. . . when

reset at -10. Thus f- 1 is tolerated by M4 for resets at -10. By
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applying Theorem 5 one can learn that fi is not tolerated by M 4 for

resets at time i + 1 and that f9 is tolerated by M4 .

Recall that our goal is to develop a theory of on-line diagnosis for

time -invariant systems and that we have introduced time-varying

systems only to be able to represent the dynamics of time-invariant

systems as faults occur. However, it has been the case thus far

that this theory has generalized in a straightforward manner to a

theory of on-line diagnosis for time-varying systems. For example,

we have defined a fault of a system where we could have simply

def ind a fault of a machine, and we have defined a notion of fault

tolerance for systems.

From this point on generalizations of this sort will not be valid

for we will always be considering resets to be released at time 0 and

for time-varying systems this simplification is not possible. A theory

of on-line diagnosis of systems could be developed along the line of

what we will present for machines but we will no longer pursue it.

Definition 11

Let f be a fault of a machine M and let g be an arbitrary function

from Z into some set . Then f is g-tolerated by M if for each r in

R and x in I+

g(I3r(x)) = g(P3 (x)).

If g = P 1 (P2 ) then g-tolerated corresponds to behavioral correctness

with respect to the principle (augmented) behavior and we will use the
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suggestive term y-tolerated (a-tolerated). If M M under the triple of
Pd

functions ( 1, a2' 3 ) then a3 -tolerated becomes important for it corres-

ponds to correctness with respect to the originally specified behavior,

i. e., the behavior of M.

Note that f is tolerated by M implies that f is g-tolerated by M

for every g. Also, f is tolerated if and only if f is y-tolerated and

a-tolerated.

Due to the definitions of the a and y functions (in terms of pro-

jections composed with the 3 function) definition and theorems concern-

ing 3 can generally be transformed into corresponding definitions

and theorems which relate to the a and y functions. This is true

in general for any behavior function of the form g o . When this

is the case, as inthe next definition, only the 0 function will be men-

tioned explicitly.

Definition 12

Let f be a fault of M, r ER, and x E I+ . Then f with initial reset

r and input x will cause an error if

Af A

A
To avoid this cumbersome phrase if pr(x) 1 r(x) we will simply say

that (f, r, x) is an error, and when it is clear that we are interested

not only in the erroneous output sequence but also in how it arises we

will say that (x) is an error.
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When we are interested in errors with respect to other behavior

functions we will use the phrases: V-error, a-error, or most generally,

g-error.

Example 8

Recall that in example 7 f = (MIT, 0) was a fault of M and that
f-1 4

00 (11) ~/f 0 (11). Thus (f 1 , 0, 11) is an error and 01 is the

erroneous output sequence caused by this error.

Clearly, (x) is an y-error implies (x) is an error but not

A 2Aconversely. Observe that (x) b r(x) implies p(xy) / r(XY) for

ally E I*. Thus p (x) is an error implies (xy) is also.

Af
If y E I+ and a E I are such that p (ya) is an error but (y)rr

is not, then ya is a minimal error input for M with initial reset r.

In this case 3(x) /r(x) where x = ya and we say that (f, r, x) (alter-

natively, 3 (x)) is a minimal error.r

Note that if f is tolerated then f can cause no errors. Equivalently,

+ Afif there exists r ER and x E I+ such that pr(x) is an error then f is not

tolerated. The converse to this is also true. Namely, if f is not

tolerated then there exist r E R and x e I+ such that r(x) is an error.

Our definition of tolerated induces a relation T7 on 61 where MfTM

if and only if f is tolerated by M. If f is improper then f = M and

thus f is tolerated by M. Hence MTM, and therefore T is a tolerance

relation. Likewise y-tolerated and a-tolerated induce tolerance rela-
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tions T and T . We say that a fault f is T-diagnosable if f is not toleratedY a

by M, (i. e. MftM). Thus f is 7-diagnosable if and only if f will cause

an error for some initial reset r and input x. Finally, we note that

since f is tolerated implies that f is y-tolerated, as sets T c T . Thus

it is possible to consider faults which are T7 -tolerated and 7-diagnosable.

Often we will be in a situation where we are concerned with a

machine M tolerating a set of faults which are all caused by the same

phenomenon but which may occur at any time. More specifically, let

f be a fault of M. We would like a result which assured us that if some

finite subset of [f] was tolerated by M then all of [f] was tolerated by

M. Later we will be interested in the same problem with regard to

diagnosis. The following notion of equivalent errors will be very

useful to us as we investigate this problem.

Informally, we will say that two errors (fi' ri, x) and (f., r., y)

with i, j > 0 are equivalent if they are caused by equivalent faults,
f. f.

if the inputs x and y are such that M 1 and M will receive identical

input sequences from time i and time j respectively, and if the initial

resets r i and r. and the inputs x and y are such that M with initial

reset r i and input x would arrive at time i to the same state to which

it would arrive at time j given the initial reset r. and the input y.
f. 3 f.

In other words, from time i in M 1 and time j in M 3 exactly the

same thing will happen to exactly the same systems modulo a

translation in time. More precisely,
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Definition 13

Let f= (S', T, 8) be afault of M and letfi, f. E [f] with i, j >0.

Let (fi, ri, x) and (f , r, y) be two errors. Then (fi ri, x) is equivalent

to (fj , r., y) ((fi, ri, x) E (f ., r ,x)) if

i) x= x 1 z and= ylz where Ix 1 = iand ly 1  j.

ii) 5(p(ri) ,x) = 6(p(r ) ,Yl)

It is easy to see that this relation is in fact an equivalence rela-

tion. I.e., it is reflexive, symmetric, and transitive.

The next result shows us one way in which we can manufacture

equivalent errors and it has an immediate corollary in the realm of
fault tolerance. This result is a simple consequence of the fact that

any state which is reachable in an 2-reachable machine is reachable

by time f.

Theorem 6

Let f be a fault of an 2-reachable machine M and let (fi, r, x)

be an error where i > 0. Then there exists an equivalent error

(f, s,y) with 0 < j <k .

Proof: Let x = x1 z where x 1 I = i and let q = -6(p(r), xl) . Since q is

in the reachable part of M and M is 2-reachable there exists s E R

andyl e I* suchthat (p(s),y 1 ) = q and jylj I<. Take j= jylj

and y = ylz. Clearly, (fj, s, y) is an error and by its construction it

is equivalent to (fi' r, x).



45

Corollary 6. 1

Let f be a fault of an f-reachable machine M and suppose that

{fo,' ... , f} is tolerated by M. Then {fo f 1 ,... } is tolerated by M.

Proof: Assume that fi with i > 0 is not tolerated by M. Then there

exists an error (fi r, x). By Theorem 6 there exists an equivalent

error (fj, s, y) with 0 < j < P. Therefore fj is not tolerated by M.

Contradiction. Hence, fi is tolerated by M for all i > 0.

Corollary 6. 2

Let f be a fault of M with reachable part P. Suppose that p(R) = P

and that f0 is tolerated by M. Then {fo f ... } is tolerated by M.

Proof: Since p(R) = P, M is 0-reachable. Apply Corollary 6. 1.

Now we will focus our attention on faults which occur before time

0. In the previous results we have excluded this case because if f.1

and f. are equivalent faults with i or j less than 0 there is, in general,
J

no relation with respect to resets at time 0 between the behaviors of
f. f.

M 1 and M J. However, in the important special case where f = (M', T, 0)

any fi E [f] with i < 0 will, with respect to resets released at time 0,

cause identical behavior. This is because f = (M', i, 0) and by Corollary
f.

2.1, Or (x) = ir(x) for all i < 0.

Theorem 7
f.

Let f = (M', T, 0) be a fault of M. Then r 1(x) = p3'(x) for all

r F R, x E I, and i < 0. In addition, if f is tolerated by M for some

j < 0 then f. is tolerated by M for all i < 0.
1
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Proof: We have already shown the first statement. Thus
f. f.

'r (x) = fr (X) for all i, j < 0 and clearly one is tolerated if and

only if the other is tolerated.

If f = (M', T, 0) is a fault of M we think of f as affecting the reset

mechanism of M if p'(r) \ (p(r) ) for some r E R. If this is not the

case then a further result, similar to Theorem 7, can be obtained.

Theorem 8

Let f = (M', T, 0) be a fault of M and suppose that p'(r) = 0(p(r))
f

for all r R. . Then f o(x) = pr(x) for allr E R andxE I+. In addition,
r r

if f. is tolerated by M for some j < 0 then f. is tolerated by M for
J - 1

all i < 0.

Proof: Since p'(r) = 0(p(r)), it is immediate from Corollary 2. 1
f f. f.

that lr o(x) = )r(x) . Therefore g3 (x) = 1 (x) for all i, j < 0 and -

the result follows from this.

Combining Theorem 7 with Corollary 6. 1 we have

Theorem 9

Let f = (M', T, 0) be a fault of an -reachable machine M and

suppose that {f 1 , o' .. " f } is tolerated by M. Then [f ] is tolerated

by M.

We finish this section by restating Corollary 6. 2 and Theorem

8 as a result which in some sense is the best possible.
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Theorem 10

Let M be a machine with reachable part P and let f = (M',T, 0) be a

fault of M. Suppose p'(r) = O(p(r) ) for each r in R, p(R) = P, and f. is3

tolerated by M for some j < 0. Then [f] is tolerated by M..

Proof: By Theorem 8 f. is tolerated by M for all i < 0. Therefore
1

f is tolerated by M, and thus by Corollary 6.2 fi is tolerated by M

for all i > 0. Thus, If] is tolerated by M.
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6. On-line Diagnosis

Before we can present our concept of on-line diagnosis in the

framework that we have built we need one final definition.

Definition 14

Let S 1 and S 2 be two systems. If R1 = R 2 and Z 1 C 12 then

the series connection of S 1 and S2 is the system

S 1 * S 2 = ( 1 ,Q, Z 2 , 6,,RI, P)

where Q = Q1 x Q 2

6((ql q1 2 ) ,a,t) = (6 1 (q 1 , a,t), 62 (q2 ,1 X(q, a, t),t))

X((ql,q 2 ), a, t) = A2 (q2 , (2 1 (q 1, a, t), t)

p(r,t) = (pl(r,t),p 2 (r,t)).

Schematically, S * S2 can be pictured as in Figure 13.

R 1

1 z  I 2 _Z2

Figure 13 The Series Connection of S, and S2
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Given a series connection S 1 * S2 as above we will let ,

and 0* denote the behavior functions of S1, S2 and S 1 * S2 respectively.

We now state the intuitive result that the behavior of S 1 * S2 is equal

to the extended behavior of S 1 composed with the behavior of S2 .

Theorem 11

Let S 1 * S2 be the series connection of S 1 with S2 . Let r E R1
+

x 1  Q1 I' q2 E2 andt e T. Then

2 A 1
(ql' q2 ) (x, t) = q 2 (ql(x , t), t)

and .2* (x) = 2 1

r, t r, tr, t (x )

Proof: We will first derive 6.

Aj

Claim: 6((ql, 2 ),x,t) = (6 1 (ql1,x,t),-62 (q2, q1(x,t),t)).

Proof by Induction: Let Ix = 1. Then

6((ql 1, q2 ) ,x,t) = 6((q l ,q 2 ),x,t)

= (6 1 (q, x,t), 62 (q 2 , 1(ql, x,t) ,t))

AI
= ( 1(q1 ,x,t), 2(q 2, 1 (x, t),t)).

Assume the result is true for all x in I+ of length n-1. Let x = n

and x = yawhere fy = n-1. Then
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6((q 1 , q 2 ) ,ya, t) = 6(5((ql, q 2 ), y, t), a, t+n-1)

^1
= 6(( 1(q, y, t) 2 (q2 q (y, t), t)), a, t+n- 1)

A-^1 (y t t ,= (61 ( 1(ql1,y,t),a,t+n-1), 2(62 (q2 , (' 010
q1

1(qly,t),a, t+n-1),t+n-1))
-- A 1 1

S(61 (ql, ya, t), 62 (q2 , ql(y, t), t) , /q (ya, t), t+n-1)A1 2ya 2t20 , t) )

S(61 (q1 , ya,t), 62 (q2 1q(ya,t),t)).

Having proved our claim the rest follows directly from the definitions.

Again let x I = n, x = ya, and ly I = n-1.

Sq2) (x,t) = X((ql, q2 ),x,t)

= (6((ql, q2 ), y, t), a, t+n- 1)

A 1

((61(qyt) 1 6 2(q2 q (y,t),t)),a,t+n-1)

A
1= 2 (62 (q2 , q1 (y, t), 1 (1 1,y,t),a,t+n-1),t+n-1)

A 1  1S 2  2 , (y t) t), (ya,t), t+n-1)

= 2( (, t), t)

= (K (X xt)
q2 q1

This establishes the first equation. The second equation is an

immediate consequence of this one.
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We are now ready to define our notion of on-line diagnosis.

This concept involves an external detector D (assumed to be fault-

free) and a time-delay k within which any error produced by a fault

must be detected. More precisely, let (M, F) be a machine with faults,

D a machine with RD = R and Z c ID, and k a nonnegative integer.

Then

Definition 15

(M, F) is (D, k) -diagnosable if

i) the behavior of M * D is the constant 0 function for

each initial reset r E R;

ii) for each f E F the system Mf * D is such that if (f, r, x)
A xy

is a minimal y-error then 0 *(xy) 0 for all y E I*

with y = k.

More generally, if.: is a set of machines then (M, F) is (J, k)-diag-

nosable if there exists a D in 9 such that (M, F) is (D, k)-diagnosable.

Note that i) implies 0 E ZD, the output alphabet for D. Each

z c ZD other than 0 is called a fault-detection signal. The choice

of the symbol "0" to indicate that the machine M is operating

properly is purely for notational convenience. In general we could

let any subset of ZD indicate proper operation and let the complement

of this set in ZD be the set of fault-detection signals. In a practical

application this choice would depend on the design constraints on the
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detector.

The two conditions in this definition can be paraphrased as:

i) The detector should never emit a fault detection signal

if the machine that it is monitoring is fault-free.

ii) The detector must emit a fault detection signal within

k time steps of the occurrence of the first y-error

produced by the faulty machine, regardless of the

input after the error.

Thus, D observes the output of Mf and must make a decision

based on this observation as to whether Mf has produced a y-error.

This decision may take some time -- thus the parameter k. The

complexity of D is a measure of the difficulty of this decision.

Note that the detector takes no part in the computation of the output

of M.

The on-line diagnosis problem can now be stated as:

Given a machine MI, a class of faults F, a class of machines

, and a delay k find an (economical) d-realization M of

MI such that (M, F) is (a, k)-diagnosable.

Two major types of questions that will be of interest to us are

questions of existence and economy. Questions of existence will be

of the form: Given M, F,Z , and k does there exist an M such that M

d-realizes M and (M, F) is (, k)-diagnosable? Questions of economy will

be of the form: Given that (M, F) is (,, k)-diagnosable can we discover an

M such that M d-realizes M and (M, F) is h, k)-diagnosable where ,
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is more restricted than k and/or k<k. In answering questions such as

these we seek methods for designing machines with these properties.

Other fundamental questions are: What time-space tradeoffs

are possible between the complexity of D and the magnitude of the

time-delay k? The detector, since it is fault-free, can be

considered as the "hard-core" in this model. Thus, in our last

question we are inquiring as to the effect of the complexity of the

"hard-core" on the complexity of the total machine-detector con-

figuration.

In the next section we will present some results which will begin

to answer these questions. We finish this section with two definitions

which will distinguish two special types of diagnosis.

Definition 16

(M, F) is (os, k)-detectable if it is ( , k)-diagnosable and each

f E F either is not tolerated or is improper.

Definition 17

(M, F) is (k)-self-diagnosable if (M, F) is (D, k) -diagnosable where

D is the trivial machine which implements the projection P 2 . I. e.,

the augmented output of M serves as the output of the detector.

Example 9

Suppose that a d-realization of M 1 (see example 1) is desired

which is (0)-self-diagnosable for the class of faults F which

is caused by any failure which affects one delay element. M5 as
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represented by Figure 14 and implemented as shown in Figure 15 is

such a realization.
0

000 1/00 11 001 1/0,1 10

1/10 1/1,0 1/1, 11/1, 1

1/10 1/1, 1

Figure 14 Machine M5

IR 

ODD A

Figure 15 Circuit for Machine M5

(M5 , F) is(0)-self-diagnosable because the added delay, d3 , acts as a

parity bit and thus any erroneous value on the output of any of the
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delays can be detected by the "ODD" gate which produces a 1 output

if and only if the parity of its inputs is odd.
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7. Preliminary Results

Here we present a potpourri of results which will begin to

answer some of the general questions we have posed and which will

help us to understand the nature of diagnosis as we have defined it.

The first result of this section shows us that if we allow the detector

to become as complex as the system it is observing then we have,

in effect, created an oracle which can diagnose nearly every fault.

Theorem 12

Let MI be any machine and let M M where M is the machinePd

formed from Mi by augmenting the output with a copy of the input.

Let F be any set of faults which are a-tolerated by M, and let/9-

be the unrestricted class of all machines. Then (M, F) is (0, 0)-

diagnosable.

Proof: Let D be a copy of M along with an equivalence gate which

produces a 0 if and only if the principle output of M is identical with

the result as computed by the copy of M in D. Clearly (M, F) is (D, 0)-

diagnosable. Pictorially, we can view M * D as in Figure 16.

R

D
M

M D

Figure 16 Diagnosis Via Duplication in the Detector
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This result clearly indicates that any further result of interest

must involve a limitation on the complexity of D and/or the amount or

type of output augmentation allowed. This motivates the following

extension of our definition of diagnosis. Let M be an output-augmented

machine with Z c Z7X ZA, and let n be a positive integer. Then

Definition 18

(M, F) is (ob, k, n)-diagnosable if (M, F) is ( , k)-diagnosable and

ZAI <n.

A result similar to Theorem 12 can be obtained by drawing the

dashed lines in Figure 16 in a different manner as shown in Figure 17.

ZD
I -t

L__ ___ I j

M D

Figure 17 Diagnosis Via Duplication in the Realization

This situation is more realistic than the previous one for now faults

which may affect either or both copies must be taken into account.

However, this is still a powerful diagnosis technique since clearly

any fault which affects only one copy of MI and many which affect both

copies will be diagnosable.
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The next result will help us to see the relationship between

fault diagnosis and fault tolerance.

Theorem 13

Let M be a machine and F a class of faults such that F is

y-tolerated by M. Then (M, F) is (Do, 0) -diagnosable where D is the

trivial machine which produces a constant 0 output.

Proof: Condition i) is clearly satisfied and condition ii) is trivially

satisfied since if M y-tolerates F then f can cause no y-errors for

any f in F.

The decision in this case can be trivially made since no y-errors

are ever produced. The situation for tolerated faults is not so simple

as this result may seem to indicate for it must be remembered that

y-tolerated does not imply tolerated and thus a y-tolerated fault could

be detected through an error which only showed up in the augmented

output.

We will now develop some results concerning diagnosis which

are analogous to Corollaries 6. 1 and 6. 2 and to Theorems 7 through

10. Let D be a detector for a machine M. It will often be the case

that the second coordinate of the state of M * D can be uniquely deter-

mined from the first coordinate. In particular, this is always the

case when QDI = 1. More formally, the series connection of M 1

with M 2 is synchronized if there exists a function h: Q -> Q 2 such
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that for each (ql' q 2 ) in the reachable part of M 1 * M2, h(q )  2'

Such a function is called the synchronizing function of M 1 * M 2 and

it must satisfy h(pl(r)) = p 2 (r) for each r in R. We can now state

the counterpart of Corollary 6. 1.

Theorem 14

Let M be an f-reachable machine and let D be a detector for

M such that M * D is synchronized. Suppose that (M, {fo ' f f)

is (D, k)-diagnosable. Then (M, {fo0 , f 1, ... }) is (D, k)-diagnos-

able.

Proof: Condition i) of Definition 15 is immediately satisfied. Let
f.

f .1 E [f] with i > 0, and let y (x) be a minimal y-error. Since TheoremI r

6 applies to y-errors as well as to errors (j-errors) there exists an
f. f.

equivalent y-error -y(y) with 0< j < k. Since y1(x) is minimal it
f.

follows that y)(y) is also minimal.
f.

Since f. is diagnosed by D we know that M * D will produce a

nonzero output sequence for every input sequence yu with Jul = k if
f.

started with initial reset s. We need only show that M 1 * D with

initial reset r and any input sequence xu will do the same.
f.

Let j, jiti, and 0* represent the behavior functions of M D,

M* D, and M*D respectively. Let x = x 1 z and y = ylz where

xlj = i and Iyl = j. Since the y-errors are equivalent (p(r),x 1) =
f. f.

-6(p(s), yl). Say -(p(r), xl) = q. Thus both M and M I will be in
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state 6(q) at times i and j respectively. Let h: Q -> QD be the
f. f.

synchronizing function of M * D. Then both M 1* D and M * D will

be in state (0(q), h(q)) at times i and j respectively. Now since D is

time invariant and since (w, i) = (w, j) for all w in I ittieivratn c0(q) (q)
follows from Theorem 11 that

^i (zu, i) Aj (zu, j)
4(0(q), h(q)) (zui) = (0(q), h(q))

We know tr(yu) A 0 yu and clearly the nonzero symbol cannot

be produced prior to time j. Therefore (o(q), h(q)) (zu, ) 0 zu I

for all u e I+ with Iu = k. This implies Al (q),h(q))(zu, i) 0 1zu

Ai Ixuland hence gr(xu) 0x . Therefore (M,{f ,f 1 ,...}) is (D,k)-

diagnosable.

Corollary 14. 1

Let M be a machine with reachable part P and let D be a detec-

tor for M such that M * D is synchronized. Suppose that p(R) = P

and that (M, f) is (D, k)-diagnosable. Then (M, {fo f. . . }) is (D, k)-

diagnosable.

Proof: p(R) = P implies M is 0-reachable. Apply Theorem 14.

Our next two results are analogous to Theorems 7 and 8.

Theorem 15

Let f = (M', 7, 0) be a fault of M and suppose that (M, f.) is (D, k) -

diagnosable for some j < 0. Then (M, {.. ., f-2' f- 1} is (D, k)-diagnosable.
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f. f.
Proof: By Theorem 7, 3 (x) = /r3(x) for all, i, j < 0. The result is

an immediate consequence of this fact.

Theorem 16

Let f = (M', T, O) be a fault of M such that p'(r) = (p(r)) for all

r E R. Suppose that (M, f) is (D,k)-diagnosable for some j < 0. Then

(M, {...,f 1 o} ) is (D,k)-diagnosable.

f. f.
Proof: By Theorems 7 and 8, O 1(x) = 3r (x) for all i,j <,0.

Combining Theorems 14 and 15 yields

Theorem 17

Let M be an 2-reachable machine and let D be a detector for M

such that M * D is synchronized. Let f = (M', T, 0) be a fault of M and

suppose that (M, {f 1, fO" ",' f}) is (D, k)-diagnosable. Then (M,[f])

is (D, k)-diagnosable.

We terminate this line of development by stating the combination

of Corollary 14. 1 with Theorem 16.

Theorem 18

Let M be a machine with reachable part P and suppose that

p(R) = P. Let D be a detector for M such that M * D is synchronized.

Let f = (M', , 0) be a fault of M such that p'(r) = 0(p(r)) for all r E R.

If (M, f j) is (D, k)-diagnosable for some j <0 then (M, [f]) is (D, k)-

diagnosable.
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The following result shows that under some conditions if the

output is not allowed to be augmented then there is a restriction on

the detector which indicates that diagnosis will generally be difficult.

Theorem 19

Let M be a machine and f a fault of M which is not tolerated.

Supposethat (M, f) is (D, k, 1) -diagnosable, and that X(P, I) = Z where

P is the reachable part of M. Then IQDI > 1.

Proof: If IQDI = 1 then the output of D at any time depends only on

its input at that time. Since M can product any symbol in Z the output

of D must be 0 for each input or we would contradict the requirement

that the behavior of M * D is the zero function. But f is not tolerated

and (M, F) is (D, k)-diagnosable. Therefore D must be able to produce a

nonzero output. Contradiction.

The reason for stating this next result is simply to make note of a

limitation of self-diagnosis -- namely that there are some faults (those

which cause y-errors but which also cause the fault detection signal to

be stuck-at=0) that can never be self-diagnosed.

A IVUJo quill QV

Let (M, F) be (k) -self-diagnosable. Then F contains no fault f

which is not y-tolerated and for which a = 0 for all r E R.
r

Proof: Obvious.
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Note that any fault which only affects the reset mechanism is

tolerated, and thus is diagnosable, if it occurs at or after time 0.

On the other hand if such a fault occurs before time 0 it may be rela-

tively difficult to diagnose. More precisely,

Theorem 21

Let f = (M', T, 0) be a fault of a machine M where T < 0 and

M' = (I,Q, Z, 6, ;, R,p'). Suppose that (M,f) is (D, k)-diagnosable and

+ t Af
that there is an r E R and x E I+ such that y r(x) is a y-error with

p'(r) E P, the reachable part of M. Then IQD > 1.

Proof: Assume IQD = 1. Then the behavior of Mf * D will be XD((x) )

where D: D ZD is the function realized by D. Thus XD(f(z)) 0

for somez E I+. Butf (z) = p'(r)(z) = 9p (z) where p = p'(r) E P.
r p I(r) p

Now p e P implies that there exist m E R and u E I* such that

p = (p(m) , u). Thus

f3(z) = 1- (z) = 1m(uz).r 6(p(m) , u) m

Now

AD(Pfr (z) ) 0 implies that XD(Om(uz) 0.

But this contradicts the hypothesis that (M, f) is (D, k)-diagnosable.

Hence IQD I >1.
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8. Possibilities for Further Investigation

In this report we have taken a fresh look at on-line diagnosis

from a theoretical point of view. Our first observation was that

conventional models were not suitable for studying this problem

and consequently we introduced the notion of a resettable time-varying

system. With this as our basic model the notions of a fault as a

transformation of a system S into another system S' at a time T, and of the

result of the fault as a system which looks like S up to time T and like S'

thereafter came very naturally. The companion notions of fault

tolerance and errors were then introduced and in Section 6 we completed

our formal model with the definition of ( , k)-diagnosable. In this

section we also made the first formal statement of the on-line diagnosis

problem and we outlined some of the questions that will need to

be answered to adequately solve this problem.

In Section 7 we made a start at answering some of these questions

and at understanding the nature of on-line diagnosis. However, we

have just begun to scratch the surface of the problem and much

more work remains to be done. Further work could be carried out

along the lines presented below.

Except for some of the examples and for the rudimentary

structure introduced by output augmentation we have been dealing

with abstract (i. e., totally unstructured) systems. Such an approach

is good for developing formally the concepts involved in our theory

but some of the questions raised can best be studied in a more
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structured environment. One reason for this is that with a

structured system we can consider the causes of faults. For

example, given an abstract system it makes no sense to speak

of the set of faults caused by component failures of a certain type

or by bridging failures. However, given a structured represen-

tation of a system (e. g., a circuit diagram) we can discuss these

and other types of failures (causes) and determine the resulting

faults (effects).

There are many different structural levels that could prove

useful to a further investigation into the theory of on-line diagnosis.

Three levels which we believe will be important are: the binary

state-assigned level, the logical circuit level, and the subsystem-

network level. These levels and the basis for their potential use-

fulness are explained in the following paragraphs.

A machine M is said to be binary state-assigned if Q = {0, 1}n for

some positive integer n. Given such a machine we can speak of

stuck-at-0 and stuck-at-1 and any other type of memory failure.

The faults corresponding to these failures can be enumerated and

comparisons can be made between various schemes for diagnosing

these faults. Memory faults have been studied before in other

contexts (see [21] and [22] for example) and they are an important

class of faults for an number of reasons. As we have seen, only a

limited amount of structure is needed to discuss them. Thus

memory faults can be analyzed before the circuit design of the machine
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is complete. Also, it is memory which distinguishes truly sequential sys-

tem from purely combinational (one-state) systems. Combinational

systems are inherently easier than sequential systems to analyze

and a number of techniques for the on-line diagnosis of such systems

are known (see [ 8] and [9] for example).

A system possesses structure at the logical circuit level if a

representation of the system is given in terms of a logical circuit

composed of primitive logical elements. These may be of the

AND-OR variety, threshold elements, or any similar elements of

a building block" nature depending upon the technology being considered.

This level is useful for investigating failures in the primitive

components. The circuit in Figure 2 is an example of a structural

representation at this level and the failure of this circuit discussed

in example 2 is a simple example of the analysis that can be conducted

at this level.

The subsystem-network level is the most general of these three

levels. In general, any system which is represented in terms of a

network of subsystems is said to have the subsystem-network level of

structure. At this level we could study the problem of implementing on-

line diagnosis on a whole computer whereas with the other levels the

emphasis would be on diagnosing one module. Note that in our

definition of diagnosis the detector is not constrained to give simply

a yes-no response. It could also provide extra information for use

in automatic fault location. Thus at this level we could study the
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problem of which subsystems must be explicitly observed by the

detector to achieve some desired fault location property.

One problem that cannot be naturally studied with our model at

any structural level is the problem of automatic reconfiguration of

the system under the control of the detector. To study this

problem our model would have to allow for feedback from the

detector to the system it is observing and at the present time

this is not allowed.
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